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ABSTRACT

An architecture is proposed for three-dimensional nonlinear material modeling of thick-
section composite laminates which may have thicknesses ranging from 1/4 in. up to several inches.
In this thickness range, there is very little applications-related experience or experimental
information available; the potential effects of out-of-plane stresses and strains on material
properties and behavior are therefore of great concern.

The material model is intended to be used as a component of a standard finite element
structural analysis package; this places several practical limits on material model complexity. The
model consists of two main components: a lamina micro-model containing fiber and matrix
elements and a simplified unit-cell analysis; and a sublaminate model based on a 3D lamination
theory which enforces equilibrium of out-of-plane stresses.

A wide variety of nonlinear material behavior descriptions can be incorporated in the fiber
and matrix constitutive models; a nonlinear elastic power-law model which reflects matrix shear-
softening response is formulated. Approaches for modeling kink-banding and interply
delamination are discussed. Excellent agreement is shown with detailed elastic finite element
micromodeling of a graphite/epoxy laminate, with DTRC thick-section compression tests of
graphite/epoxy and glass/epoxy laminates, and with exact ply-by-ply elasticity solutions for a thick
cylinder.
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1. Introduction

This report describes a framework for the development of 3-D nonlinear material mod-
els for the structural analysis of thick-section laminated composite structures.

The proposed class of models are predictive; that is, they are based on simplified mi-
cro-mechanical analysis and allow predictions of material and structural behavior to be
made, proceeding from known or assumed properties of fiber and matrix constituents.

The material model is designed to function through a standard interface with structural
analysis packages; the micro-model and sublaminate model which together constitute the
two-level material model are hidden from element and structural-level processes.

Essential features of the modeling approach are emphasized; within this basic architec-
ture, various options are available for modeling specific types of nonlinearity, including
delaminations. A nonlinear elastic model for matrix behavior is proposed for initial imple-
mentation.

The material model architecture is evaluated in the linear elastic range by separately
exercising its two components: the micro-model gives excellent agreement with published
results of detailed elastic finite element micromodeling of a graphite/epoxy laminate, and

with compression loaded [90196 laminates tested at DTRC; the sublaminate model likewise

shows excellent agreement with DTRC compression tests of [02/90o1, laminates and with
exact ply-by-ply elasticity solutions for a thick cylinder.

Purely phenomenological approaches may also be viable; however, these typically re-
quire voluminous amounts of experimental data. Predictive capabilities are still needed in
order to quickly and cheaply evaluate new material systems.

2. Thick-Section Laminates

As a working definition, a thick-section laminate may be considered to be one with
thickness t a 1/4 in. Relatively little experimental data is available in this thickness range.
.articularly for compressive loads (Camponeschi 1989b).

For these thick laminates, it is natural to seek a fully three-dimensional characterization
of mechanical properties and behavior, even though it is not yet known precisely when such
comprehensive information may be essential for analysisidesign.

The term "thick-section" carries no implication regarding the expected character of
stress distributions in the composite structure or component. Therefore, it does not follow
that a 3-D thick-section material model must necessarily be used in a full-blown 3-D stress
analysis; only that accurate material constitutive information is available for determining
out-of-plane stresses and strains, and for evaluating associated failure criteria.

--2--



2.1. Typical Thick-Section Laminate Construction

Thick-section graphite/epoxy or glass/epoxy composite laminates may have thicknesses
ranging from 1/4 in. up to several inches. The laminate is often constructed from unidirec-
tional plies each approximately .005 in. thick; it may therefore consist of literally hundreds
of individual plies, arranged in a regular stacking sequence.

Thus ply-by-ply analysis, often used in analysis of thin-sections, is not feasible. How-
ever, the very large number of plies typical of thick-section laminates produces a structure
which is, in effect, much more homogeneous than one with a small number of plies; this
feature of thick-section laminates allows a homogenization or "smearing" procedure to be
used effectively at the laminate level.

2.2. Conditions at Interfaces between Laminae

Fig. 1 shows a typical lamina subjected to a three dimensional state of average or nomi-
nal stress. These stresses represent effective values averaged over typical unit cells at the
microscopic level.The reinforcing fibers lie in the x Y plane in Fig.l; the z axis is the thick-
ness direction. The stresses are grouped into in-plane ( a, a),. r,, ), and out-of-plane
stresses ( u,. r),. r. ). Strains are grouped in the same way into in-plane strains

c E y.,', ). and out-of-plane strains ( l,. Y,. ,.

The conditions at the interface are:

1. On the top and bottom surfaces of the lamina, where it is assumed to be perfectly
bonded to adjacent laminae, displacement continuity requires that the in-plane strains

E,. cr Yao ) be continuous across interfaces.

2. Equilibrium requires that out-of-plane stresses ( o,. T .. tr, ) be continuous across in-
terfaces.

Where elastic properties change across interfaces, the complementary quantities (out-
of-plane strains and in-plane stresses) can be discontinuous.

Classical Laminate Theory (CLT) for thin-sections ignores the second interface condi-
tion, on the assumption that the out-of-plane stresses are negligible, and that the in-plane
stresses and strains can be accurately determined without considering interface equilibrium.

The apparent difficulty of satisfying equilibrium of out-of-plane stresses, within the
framework of conventional modeling and structural analysis methods, has concerned many
researchers (Christensen 1988) and has led to attempts to develop so-called hybrid and
mixed finite element methods for analysis of thick laminated shells.

The approach proposed here addresses these concerns without resorting to un-conven.
tional methods.

--3-



3. Role of Material Model in Nonlinear Structural Analysis

Structural modeling usually employs numerically-integrated parametric finite ele-
ments. This element family, which includes line, surface and solid elements, provides a
flexible geometric modeling capability and a systematic approach for all element level com-
putations.

Fig. 2 shows a schematic view of a finite element model. A typical 20-node iso-
parametric element is shown, with a set of material points, or Gaussian integration points
(2x2x3 integration).

These material points are the basic building blocks of the structural model. They are the
locations at which stresses, strains and loading history variables are tracked. Each discrete
material point is taken to represent the behavior of some finite volume of material in the
neighborhood of that point; if the idealization is too coarse, more material points are used.
Ply-by-ply monitoring of material response and behavior, in the context of thick-sections,
would correspond to the use of hundreds of material points through the thickness of the
laminate, which is clearly not required.

The material model operates at these material points and performs two important tasks:
(1) stress updates; and (2) tangent stiffness updates, if required.

3.1. Solution of Nonlinear Structural Systems

The solution of nonlinear systems is usually carried out via a combined incremental-it-
erative procedure. Modified Newton-Raphson (MNR) is the most widely-used method.

The loads are applied in increments P.. P... - ; at any load step, equilibrium is only
approximately satisfied in the numerical solution, as shown in Fig. 3, i.e.

1 Ps. = P, (1)

in which I. is the internal force vector and R. is the residual load at step n.

An incremental-iterative solution scheme
^I)4 AU. 1  . *-" (2)

KI "A-D,- := P,.I - 1,

for the nonlinear equilibrium equations is illustrated in Fig. 4. K, is the tangent stiffness, the

displacement increment AU.., r= U.., - U. , and the superscripts in Eq. (2) are iteration
indices.

Referring to Eq. (2), at each itzration: (1) the internal force vector must be updated, and
(2) the tangent stiffness may be updated, depending on solution strategy. Both of these
operations require computation from the material model.

-4-



3.2. Materiai Point Computations

The current internal force I for the structure is calculated by assembling element con-

tributions I, which in turn are numerically integrated from material point contribuLions by

I, W2 w J, Br (3)
MP•

in which a, are the stresses at the material point i. Most of the computation involved in Eq.

(3) is contained in the evaluation of the updated stress o, at each material point.

The tangent stiffness K, is calculated by assembling element contributions K,, which
are numerically integrated from material point contributions by

K.= W , J, B,rC, B, (4)
IWPI

in which c, is the material tangent stiffness, relating incremental stresses to incremental
strains at material point i.

Strain increments, previous total stress and strain, and history parameters are passed to
the material model, which then updates history parameters. stresses, and material tangent
stiffness at the material point. Geometric nonlinearities, if present, appear in the strain-dis-

placement matrix B,

The stress-update and other algorithms in the material model are invoked a very large
number of times in any realistic nonlinear analysis. This must be kept clearly in mind when
developing nonlinear material models which are intended for use in structural analysis and
design.

Consider as an example, a structural analysis involving a thick laminated cylindrical
shell modeled with 24-node parametric elements (3 nodes through thickess by 8 nodes in
plane): a realistic mesh might be, say, 24 elements circumferentially (15 degree intervals)
by 15 elements in the longitudinal direction. Such a mesh has about 10,000 degrees-of-free-
dom, which is moderately large for nonlinear problems at the present time (1990). To esti-
mate the number of times that the material model would be called, assume a (2x2x3) inte-
gration rule and 10 load steps with ar. .verage of 4 iterations per step. The material model
would be called about 200,000 times ( '1 inc x 4 iter/ine x 360 el x 12 mp•cl = 172.800O). If
each material model call used I CPU-second. the material model computations a;onc would
require about 50 CPU-hours.

This estinate brings iato focus the essential importance of fast, efficient algorithms for
material model computations.



4. Material Model

The material model consists o1 two main components illustrated in Fig. 5:

(1) a micro-model, which describes the response of a unidirectional lamina, starting from
fiber and matrix constitutive descriptions, and,

(2) a sublaminate model, which generates the response of a typical repeating sublaminaw-
which is constructed from several uni-directional laminae.

The essential structure of these two models will first be developed. specific descriptions
of material nonlinearities will be discussed later.

4.1. Micro-Model

The micro-model, if it is to form part, of a structural analysis package, must be reaso.
ably simple.

Detailed micro-mechanical modeling, using finite element modeling of typical r=.peat-
ing unit cells, (Adams 1974, Chen and Cheng 1970) is much too computationally-iatensive
for this purpose. In addition, these models necessarily incorporate a particular unit cell
geometry.

Simpler displacemnt-based micro-models, with several tens of degrees-of-freedom
(Pindera et al 1990. Aboudi 1990) have also been proposed. These are essentially crude
finite-element models, which use simplified unit cell geometries with rectangular fiber
cross-sections. These models are quite accurate compared to more detailed finite element
micro-mechanical models, but are still too complicated for a structural analysis package.

At the other end of the spectrum, various smearing procedures. including "rule-of-mix-
tures" are available (Hashin and Rosen 1964. Hemans 1967, Whitney 1967. 1-ehrens -1'1 7 1).

Clearly, the complexities in unit cell analysis result Irom local geometry effects and the
accompanying non-uniform stress and strain conditions in the unit cell. Tie approach used
here is intermediate between the latter two categories of micro-models described above. It is
essentially a smearing approach. in which average stresses and a simpiificd unit cell gcome.
try with square fiber cross-sections (Fig. 6) are used.

Stress and Strain Smearing in Unit Cell

The stress and strain smearing procedure is illustrated by the analogs shown in the
lower part of Fig. 6. They are intended to schematically represent the load paths in the unit
cell.

The unit-cell-average sresses and strains arc labelied with the sub.cripts (1.2.3). The
I-axis is the fiber direction, the 2-axis lies in the plane of the lamina. and the 3-axis iV the
thickness direction.



There are 3 distinct material elements in the unit cell model, represented by the 3 spring
elements in the analog models in Fig. 6; one of these is a fiber element, and the remaining
two are matrix elements.

The load path through these material elements is different for axial effects than for
transverse effects; for axial (1 1-direction) stress and strain, the material elements function
"in parallel", that is, the 11-direction strains are the same in all three elements as indicated
by the schematic in the lower left portion of Fig. 6. This leads to the "rule-of-mixtures" for
axial stresses - which is known to be accurate for this case.

The assumed load path for the remaining components (22,12,33,23,13) can be visual-

ized by considering the unit-cell-average transverse stress O3 and the corresponding strain

E33. If U33 is applied to the upper and lower horizontal boundaries of the unit cell shown in
Fig. 6, there are two parallel stress paths available; one through a matrix element (height

1 and width 1 - ) and the second through the series-connected fiber ( FV by FV) and

matrix (1 - /v by 'V) elements. This is illustrated by the analog in the lower right portion of
Fig. 6. In the series-connected fiber and matrix elements, the stresses are the equal, and the
strains are combined by rule-of-mixtures.

The smearing procedure for the unit-cell is now set down more formally.

First, for convenience, group the three material elements into two sub-groups: Material
Element A, consisting of the fiber element and the series-or-parallel connected matrix ele-
ment, and Material Element B, consisting of the remaining matrix element.

Material Elements A and B are connected in parallel for all component directions, that
is, their strains are the same, and the unit-cell-average stresses are weighted averages of the
stresses in A and B. That is,

E[e [E] = [E]
C A B (5)

P[o wt [] + w-[u]
C A B

in which the stresses and strains are (6xl) vectors, the subscript C stands for the unit-cell-

averages, and Wt and W. are weighting factors, defined as

W! = FV Wly= 1= - (6)

Within Material Element A, the axial (11) components are treated differently from the
remaining components, as explained above. In order to express the equilibrium and com-
patibility conditions compactly, the stress and strain vectors are partitioned as follows:

Thus a. and E. are (lxI), and a, and c, are (5xl). The relationships for Material
Element A are

-7-



all Ell 1

[22 1u (7)
E33 C33

723 Y23"L 13J L J L Y131- L

(8)

- w + w.

in which the subscripts f and mn denote fiber and matrix elements in Material Element A,

respectively. I - "'ighting factors Wt and IV, are given by Eq. (6). Note that the vectol s
shown in Eq. •d) are mixed; that is, each consists of both stresses and strains.

Eqs. (5) and (8) are the smearing relationships that define the micro-model. These
relationships are also valid for incremental stresses and strains.

Tangent Stiffness

The tangent stiffness relates incremental (unit-cell-average) stresses and strains. The
tangent stiffness for the unit cell is built up from tangent stiffness relations for the three
components; These may be linear relationships or they may reflect various types of non-
linearities. Specific forms of nonlinear models are discussed later.

The relations between incremental stress and strain for the three material components
of the unit cell are expressed directly in terms of tangent compliance matrices, and parti.
tioned in accordance with Eq. (7). as



.. ...- j-- -(9)
Ld~bJ sL sJL LIo

in which S is the tangent compliance matrix.

The tangent compliance matrix is now partially-inverted to provide relations of the
form

[di] [ 'A ]
Ldcb L BTVK H~(10)

in which A is (lxI) , B is (1x5), and D is (5x5), and are given by

A (1•/S.)
B =- (11S. •) - S • 0 I 1)

DB = -(1/S.) ( S11 S)

Thus the only "inversion" required is that of S., a (lxi).

Material Element A

With the tangent relations expressed in the form of Eq. (10), the smearing relation Eq.
(8) can be applied to give the partially-inverted tangent compliance for Material Element A
as

LO AA

(12)

The partial inversion is now completed to give the tangent stiffness for Material Element
A as

-9-



rdna [C 'cab lc-]
- -- -(13)

dubCb [ 1 Cbb Jdb
A A A

in which

Cb, = D)-1

Cab = B Cb, (14)

C= A + Cab B

Material Element B

The tangent compliance matrix for Material Element B, which consists of a single ma-
trix element, is inverted to give the tangent stiffness relation as

0-a C - Cab d- 2 (15)

dub,,oj Cb. IC,-, db
B B B

Unit Cell

Th- smearing relation Eo (5) is now appliud to give the tangent stiffness relation for the
unit cell as

dub b deb

(16)

S'co - - + w. -- - I

L C A

-10-



Elastic Tangent Compliance

The elastic tangent compliance relations are an ingredient of any nonlinear model.
These relations are expressed directly for each component in terms of engineering proper-
ties as follows

S1

Ell El •all

C22 V12  - Symm aaa

V12 0 0 r12
a0G 12 (17)

V13 V23 a33

1

723 0 0 0 0 23 T2 3

J 0 0 0 0 0 G13- L T13

For transversely isotropic component materials,

E2 = E3 G12 = G1) V12 = V13
E2 (18)

G23 = E
2(1 + V3)

so that there are 5 independent elastic constants.

For isotropic component materials,

El = E2  E3 r E
(19)

V1 2 = lt3 V13 0 V

E
G12 = Gj) Gl) E -

2(1 +v)

-11-



4.2. Sublaminate Model

The sublaminate consists of the smallest typical repeating unit from which the laminate

is constructed. For example, for a [02/90116, laminate, which consists of 96 plies, the sub.

laminate is [02/901, i.e. 3 plies.

The sublaminate model provides information on the material behavior in a neighbor-
hood of each material point in the structural model. In this neighborhood, the actual lami-
nate is represented as an equivalent homogeneous anisotropic material.

Equivalent Continuum Modeling

Equivalent continuum modeling has been used successfully, not only in composites, but
in many other areas of mechanics; literally hundreds of papers could be cited. For example,
the analysis of bodies with regular patterns of perforations (Malkin 1952, Horvay 1952,
O'Donnell 1973, Porowski and O'Donnell 1974, Slot and Branca 1974, Pecknold and
Presswalla 1983) is closely related to micromechanical modeling of composites. An early
w )rk (Hrennikoff 1941), which could be considered as a forerunner of the finite element
method, turned the process around; an elastic continuum was modeled for analysis as an
assemblage of discrete bars.

In many cases, the actual material has a fine-grained microstructure which cannot, or
need not, be explicitly treated in the analysis. Even though the basic components of the
material at the microstructural level may exhibit isotropic behavior, the overall response
may be anisotropic, because of this microstructure. The relation of the microstructure to the
resulting elastic symmetry of the equivalent material is an interesting question which is
apparently not completely resolved (Christensen 1987).

The philosophy of a!l of these methods is the same: for analysis, replace the actual
material by a well-defined equivalent material; the properties of this equivalent material are
determined by requiring that the actual and equivalent materials respond in the same way
when subjected to certain fundamental patterns of stress or strain. These fundamental pat.
terns should include spatially homogeneous conditions of stress and/or strain, but may in-
clude higher-order spatial variations as well, depending on the complexity of the postulated
equivalent material.

Note that in the actual structure which is analyzed, the stress and strain conditions will
generally be much more complex than these fundamental patterns. Thus, the modeling
should be done in such a way that the variation of stress and strain over a material neighbor-
hood is not "too large", so that the conditions experienced by the equivalent material are not
too much different from the fundamental patterns with which it was calibrated.

In the sublaminate model proposed here, the equivalent material is homogeneous. If,
for example, the laminate is made of only a few plies with greatly differing elastic properties
from ply to ply, this approach must be expected to lose accuracy; ply-by-ply analysis may
then be necessary. However, with only a few plies, it probably also is then feasible.

-12-



If, on the other hand, the laminate consists of a large number of plies (the case of
interest), but stress and strain variations are large across its thickness, enough material
points should be used through the thickness to reduce the size of the material neighborhood
around a given material point. Then, the variation of stress and strain over a single neighbor-
hood will not be large and the approach should be accurate.

Analysis of the equivalent material yields average or nominal stressses and strains; in-
formation on local stresses and strains at the microstructural level can only be recovered by
back-calculating unit cell response to these nominal stresses and strains (Pecknold and
Presswalla 1983).

The lamina micro-model described earlier, as well as all of the micromechanical mod-
els for composites, uses the general approach described above. The sublaminate model (Fig.
7) is also based on this approach and is described next.

Partit~oning of Stress and Strain Vectors

The stress and strain vectors for each lamina from which the sublaminate is constructed
are partitioned into in-plane and out-of-plane components.

192 E22 E

r12U Y12[~] - -- - -- (20)
ml U 33 C33

r23 Go Y23 Eo

L V13 j L JLY13. L J

Note that the ordering of the stress and strain components is unchanged, but the parti-
tioning is different than that used for the micro-model, Eq. (7).

Transformation to Global Coordinates

Some additional notation is now required to distinguish quantities referred to the lain.

ina, or local, (1 2 3)coordinate system from those referred to the laminate, or global, (x y z)

coordinate system, Fig. 7. a ' and e ' will now denote stresses and strains in a lamina coordi-

nate system. and a and f will denote quantities referred to the laminate system. In addi-
tion, where needed for clarity, a superscript k will indicate a particular lamina. The transfor-
mation between local and global coordinates is

Ef I = [T][c] [(Y - T] T[O] (2-1)

-13-



The transformations for in-plane and out-of plane stresses and strains uncouple

T - -I --- (22)01TK0 I T]

c2 s2  S c 1 0 0

T, - 2 C2 -S C To- 0 c -s

-2 s c 2 s c c2 -s 2  0 s c

C E

C a Cosa*k

s a sin a*

where a' is the angle between the fiber direction (1) in lamina k and the global x axis.

Stress and Strain Smearing in Sublaminate

The interlaminar continuity conditions, Fig. 1, require that in-plane strains and out-of-
plane stresses be continuous across interfaces.

Thus at the interface between lamina k and lamina k+l

- k k+1

= H(23)

Fundamental Patterns of Stress and Strain for Definition of Equivalent Material

The fundamental patterns of stress and strain which are used to define the equivalent
material should include spatially homogeneous patterns. Higher order spatial variations
could be used in addition, but they are not significant here because of the choice of a homo-
geneous continuum as the equivalent material.

The crucial step is to recognize that, in view of the interface conditions Eq. (23), the
patterns that should be used are homogeneous in-plane strains and homogeneous out-of-
plane stresses.

-14-



Thus for each lamina k

(24)

where the overbar indicates smeared sublaminate quantities.

Smeared In-plane Stresses and Out-of-plane Strains

The in-plane stresses and out-of plane strains are now determined from

Nk - • (25)

where t' is the thickness of lamina k, t is the sublaminate thickness, and N is the number
of laminae in the sublaminate.

Eqs. (24) and (25), which are analogous to Eq. (8) for the micro-model, characterize
the sublaminate model. These relations also apply to incremental stresses and strains.

Tangent Stiffness

Incremental tangent stiffness relations for a lamina are given in Eq. (16). These are
transformed to global coordinates to give

[do] [ C][de] (26)

[c ] =[ T] [C][T]

The lamina stiffness is now partially inverted to give

d at A B ] d,, ( 7-de, - -B-, (D2)

in which
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D = C-

B = Clo D (28)

A = C1- B'Ca

The sublaminate smearing gives

j . .. -(29)

LT o I U N A Lk

-B r ' D

The sublaminate tangent stiffness is then calculated from

-j - l- --- I - (30)

L[,,j [ rd. J rL.

•*Io = ,.

Stress Updates

Stress updating is the most important task performed by the material model and, as
already observed, it must be efficient because it is done so frequently. The stress update
procedure for the thick-section material model will be more complex than for, say, a metal
plasticity material model; this is a direct result of the two-level "microstructure" which is
built into the thick-section model but hidden from the element and structural level proc-
esses.

In a standard nonlinear solution the material model receives increments of stress and

strain di'-. dZ. from the element processor. Strains are updated directly, i.e.
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E *-- T" + 0 (31)

However, material point stresses are not usually updated by U•- U + d- since that would
produce a cumulative error as indicated in Fig. 8, which would require quite small solution
step sizes to control. Note that Fig. 8 should not be interpreted in too literal a sense, since in

many cases, e.g. multi-axial incremental plasticity, an explicit relation U = U () does not
exist.

In the thick-section material model, stress and strain increments in al; components can
be back-calculated using tangent material properties. New stress and strain totals calculated
from these tangential approximations satisfy all the equilibrium and compatibility relations
(Eqs.(5),(8),(24) and (25)) which define the microstructure of the material model; however,
these new totals will not satisfy nonlinear constitutive relations for the fiber and matrix
elements of the lamina micro-model.

The basic approach in updating the stresses is to adjust the new totals so that the consti-
tutive relations of the fiber and matrix elements, together with the microstructure relations,
Eqs.(5),(8),(24) and (25), are satisfied to a specified tolerance; at the end of this process the

smeared sublaminate strains ? + d" must be unchanged, and the updated stresses U are
delivered. From these updated stresses the internal force vector Eq. (3) can be determined.

Thus an iterative procedure is required, in which, for example, the out-of-plane strains
of individual laminae can be adjusted, as long as their weighted-average is unchanged, i.e.

There are many options available; further work is needed to develop an efficient stress
update algorithm.

Comments on Reiated Work

Two previous works (Pagano 1974, Sun and Li 1988) utilize the same basic ideas for
defining the equivalent elastic properties of the sublaminate. The presentation and view-
point in these papers seem, to the author, to obscure the essential simpliciiy of the ideas
involved, and has perhaps contributed to the situation where it was recently observed (Chris.
tensen 1988) that "two-dimensional lamination theory cannot be easily extended to three-
dimensions". The sublaminate model presented here is a 3D lamination theory which is not
much more complicated that CLT for two-dimensions.
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5. Evaluation of Model Architecture

The proposed class of models has two essential components:

1) The lamina micro-model, Eqs. (5) and (8), and

2) The sublaminate model, Eqs. (24) and (25).

In this section, the potential of the model is explored by examining its performance (1)
in the elastic range and (2) using exact, rather than finite element, stress analysis at the
structural level.

The intent is to separate issues of material-nonlinearity-modeling and stress analysis
accuracy from issues of model architecture. Further, the lamina micro-model is evaluated
independently from the sublaminate model.

5.1. Lamina Micro-Model

Two sets of comparisons are made for the unit cell/lamina micro-model portion of the
model: a comparison with results of detailed finite element micromodeling; and compari-
sons with experimental results.

Comparison with detailed FE Micromodeling

Equivalent elastic properties of a unidirectional graphite/epoxy lamina with a hexagonal
fiber array were determined by detailed finite element micromodeling by Chen and Cheng
(1970). Behrens (1971) compared these results with several simplified analytical models
(Hashin and Rosen 1964, Hermans 1967, Whitney 1967).

The lamina properties were determined using the lamina micro-model, over the full
range of fiber volume fraction, using the graphite and epoxy properties from Chen and
Cheng (1970) shown in Table 1. Graphite fiber properties are transversely isotropic and the
epoxy resin is isotropic.

The lamina transverse moduli E: and Gu; are the most difficult to predict. For these
engineering properties, Fig. 9 compares lamina micro-model values with the finite element
results of Chen and Cheng. The lamina micro-model gives excellent results for this case.

In order to see if tile lamina micro-model could be further simplified, the calculations
were repeated using a simpler version, one consisting only of Material Element A (with the
model weighting factors appropriately adjusted). Fig. 10 indicates that the results are then
significantly less accurate, especially in the important mid-range of fiber volume fraction.
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Comparison with DTRC Compression Test Results for Unidirectional Lamina

In an ongoing program at DTRC concerned with behavior of thick sections in compres-
sion, Camponeschi (1989a,b) determined unidirectional properties for AS4/3501-6 and S2

glass/3501-6 prepreg tapes using (90196 laminates.

The lamina micro-model was used to "predict" the prepreg tape properties from as-
sumed constituent properties. Reasonable fiber and matrix properties were selected for this
purpose (Table 2).

The micro-model results are shown in Tables 3 and 4. The lamina properties are pre-
dicted quite well; better fit with the experimental values can be achieved by tuning the
constituent properties. Note that some constituent properties are often inferred in this way
because they are difficult to measure directly.

5.2. Sublaminate Model

The sublaminate model was explored in two ways: first, comparisons were made with

compression test results for [02/901,6, laminates; second, exact elasticity solutions for thick
cylinders under compression and bending were used to evaluate the sublaminate smearing
procedure.

Comparison with DTRC Compression Test Results for Thick Laminate

In order to uncouple the sublaminate model from the lamina micro-model for evalu-
ation purposes, the experimentally determined lamina properties for the AS4/3501-6 and
S2 glass/3501-6 prepreg tapes (Table 3) were used in the sublaminate model to predict the
equivalent-material properties of the 96-ply laminate.

Initial elastic properties determined from compression tests on 0.5-in thick A_/90114,
laminates (Camponeschi 1989 a,b) are shown in Table 5, along with the sublaminate model
results. These numerical results are identical to those that would be obtained by the proce-
dures of Pagano (1974) or Sun and U (1988).

Structural Analysis of Thick Cylinder

A model thick-walled cylinder (Fig. 11), with approximately ^.he same 6imensions as
those tested at DTRC Carderock (Garala 1987), was analyzed using an exact elasticity solu-
tion for cross-ply laminated cylinders (Rahman 1990). This solution assumes a condition of

plane strain in the cylinder axis direction, so there is no axial bending.

A general circumferentia!ly-varying pressure load on the cylinder can be decomposed

into its harmonic components, i.e. p(,(O = p, + 2 p. cosnO . The axisymmetric pressure N•
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produces primarily a compressive mode of response in the cylinder wall; the ovalling pres-

sure P2 cos 20 produces primarily circumferential flexure. These two pressure distributions

were selected as representative loading cases, with po= 10,000 psi, and P2= 100 psi (Fig.

11). (Note that the load p, cos0 cannot be treated by this particular plane-strain solution
because it produces axial bending in the cylinder.)

The cylinder OD is 8.25 in.; the wall thickness is 0.48 in. The wall is assumed to be built
up from 96 plies of AS4/3501-6 prepreg tape with the properties determined experimentally
by Camponeschi (1989 a,b) shown in Table 3. Two different stacking sequences are consid-

ered: (1) 102/90116, ; and (2) [032/9061] , which can be considered as a [02/901, lay-up with
ply thickness = 16 x .005 in. = .08 in. This latter designation will be used.

Response of 102/90116, Layup

This wall construction consists of 96 plies, each .005 in. thick, with two unidirectional
plies in the circumferential direction for each one in the axial direction. This is the type of
thick-section construction which is of primary interest; that is. many thin plies interleaved to
produce an effectively homogeneous wall structure.

Figs. 12(a) and 12(b) show the through-thickness distributions of stress and strain for
the axi-symmetric compressive response; Figs. 13(a) and 13(b) show the bending response.
These responses, which were coriputed on a ply-by-ply basis from the exact elasticity solu-
tion, provide a standard of comparison for the sublaminate model.

First, some general characteristics of the exact responses should be noted in Figs. 12 and
13:

(1) the in-plane strain ,# and out-of-plane stresses a. and r# (Figs. 12(a) and 13(a)) are
not only continous across ply interfaces, b1t are very smooth through the entire thickness:

(2) the in-plane stress 0
E and out-of-plane strains e, and r., (Figs. 12(b) and 13(b)) vary

markedly from ply to ply (when there is an abrupt chang- of material properties). yet the
distribution for each family of plies with the same orientation is smooth, forming. in this

case. two envelopes of response. SupAxse that only the smoothly--arying rICpor$es (, 0,,. r,,

wvre known; the responses u. (,. 7.o which .vary disrconmintouly from ply to ply coudd be edaihy
and exactly. calculated using individual ply pronrties.

This latter observation bears directly on the evaluation of the sublaminate model. Fits.
12 and 13 show (superimposed on the exact rcsponses) the responscs computed frocm the
smeared properties provided by the sublaminate model: i.e. the response of a homogeneous

anisotropic cylinder with equivalent properties. The smoothly-varying re•sponser io # . .,,
delivered by the sublaminate model arc almost indistinguishable from those of the exact

ply-by-ply analysis: this is the crucial result, because it follows that the remaining responzes

o (,. r, can then be back-calculated easily and accurately from this information.
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It is also of interest to examine the smeared responses e. E,, 3,6 from the sublaminate
model although they are not directly used to determine corresponding ply values, as noted
above. It is apparent from Figs. 12 and 13 that these smeared values are indeed weighted
averages of the actual distributions.

These comparisons show that the sublaminate model is capable of producing very accu-
rate responses.

Response of [02/901, Layup

The [02/90]16, layup examined in the last section was idealized, in the stress analysis
phase, as a homogeneous material through the thickness of the laminate; that is, the
smeared elastic properties were used together with the exact solution for a single ply. In that
case, a large number (32) of sublaminates constitute the laminate, and the variation of stress
and strain over a single sublaminate is not large. Thus the idealization is accurate.

Now consider the [02/901, layup shown in Figs. 14 and 15. Effectively, this wall con-
struction consists of just 3 plies, each 0.16 in. thick; there are unidirectional circumferential
plies at the inner and outer surfaces of the cylinder, and a single axial ply sandwiched
between them. Assuming this layup to be homogeneous through the thickness will obviously
underestimate the actual flexural stiffness of the section, which has circumferentially stiff

layers at the outer fibers. Thus Ea is over-estimated (flexural stiffness too low) in bending
(Fig. 15(a)), although it is stil determined accurately in compression.

There are two alternatives here: treat the wall as piecewise homogeneous (if the analysis
is done via finite element then use more than one element through-thickness); or, u'e shell
theory rather than contin-uum modeling, in which flexural stiffness can be specified inde-
pendently from membranw stiffness. In the latter case, the sublaminate model can be made
to provide the necessary stiffness information by exparding the set of fundamental patterns
of stress and strain to include in-plane strains which vary linearly in the thickness direction
(Pagano 1974).

In the case of finite element modeling, special techniques can ie used to enforce inter-
laminar stress continuity within the framewock of conventional displacement-based meth-
ods (Rahman 1990).
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6. Nonlinearitles

The modeling of several different types of nonlinear behavior and associated failure
modes (Chou et al 1986) are of particular interest and importance for the structural analysis
of laminated composites.

(a) Kink-banding is the dominant failure mode of laminates in direct compression (Cam-
poneschi 1989 a,b); similar behavior is observed in other materials having a laminated
structure such as wood (Wilson et al 1979) and rock (Donath 1970). The underlying mecha-
nism is fiber micro-buckling, which is sensitive to fiber-matrix interaction and imperfec-
tions such as fiber waviness (Davis 1975). The phenomenon has been known for some time;
Orowan (1942) refers to earlier work dating to 1898. However, much of the literature is
descriptive and qualitative. Simple analytical formulae are available (Argon 1972, Evans
and Adler 1978, Budiansky 1983) but these do not correlate well with experimental failure
loads. A general analytical approach is apparently not yet available.

(b) Interply delamination is a frequently observed failure mode in thin laminates, particu-
larly in bending or in bending-direct stress combinations. Local delaminations may couple
with global stability behavior in composite shells, by reducing stiffness locally; similarly,
delamination is associated with, and may interact with, kink-band failure modes (Cam-
poneschi 1989).

(b) Matrix nonlinearity in epoxy resins is well-known (Adams 1974) and is most pro-
nounced in pure shear. A degrading shear modulus can have an important detrimental influ-
ence on the global stability behavior of composite shells. Furthermore, softening of the
matrix in shear may interact with kink-banding; the simple analytical formulae (Budiansky
1983) that predict kink-band failure stresses show that the matrix shear modulus is the
dominant parameter.

Modeling Approaches

Nonlinear oehavior can be introduced into the proposed material model in several ways:

(1) in the constitutive models for the fiber and matrix elements;
(2) in the coupling between fiber and matrix elements in the lamina micro-model; and
(3) in the coupling between laminae in the sublaminate model.

Even though kink-banding is a stability-related phenomenon on the micro-scale, it may
be possible to model it as a material nonlinearity in the fiber consitutive model. Modeling of
local buckling phenomena as material nonlinearities has been successful in structural analy-
ses with other materials.

An approach for mcdeling interply delamination is to interpose a thin layer with degrad-
ing tensile strength bctween laminae in the suDlaminate model; an alternate approach is to
introduce this behavior dircctly into the matrix constitutive model.
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Modeling of matrix nonlinearity can be done via the matrix element constitutive model.
Plasticity-based formulations are feasible (Adams 1974, Pindera et al 1990, Aboudi 1990);
but nonlinear elastic models provide a simpler alternative.

Nonlinear Elastic Model for Matrix

Compression tests at DTRC (Camponeschi 1989a,b) indicate that the nonlinear re-
sponse of thick laminates is essentially reversible over a substantial loading range. With this
in mind, a nonlinear elastic model is proposed as a reasonable first step in modeling matrix
nonlinearities in thick-section laminates.

The primary effect which is observed is nonlinear softening in pure shear. This can be
modeled by a power-law relation

ro0"\
,p=•- + f I-I-(3

where P. ro, and n are material constants to be determined.

In addition, a nonlinear pressure-volume change response can be modeled by a similar
power-law relation as

0 = L + L (34)
K K~poJ

in hih isth hdrotaicpresue,0 i te olue hager 31- v)istE

3-2,v) is the
elastic bulk modulus and a, po. and m are material constants to be determined.

Pressure-volume change nonlinearities in the matrix are probably of minor importance,
but are included here for generality.

These two power-law relations must be stated in a form which is valid for general
multi-axial stress states, i.e.

a
(0 = Eve + G T-O (35)
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in which Ev" are linear elastic strains and

1
P UA sO - Po-P 1

(36)1
P, a IPl - SIJso12

The incremental form of Eq. (35) is

dEQ = dleo' + m (L)m'1 dp 61 + ds1s

(37)
n-1 (r•/°"

2G 2 \To1•n '0 ds/

where the normalized deviator stresses are

SU =-- s(38)

Eqs. (35) and (37) can be expressed in matrix form as

[E] - ,S1] + c2 [S2l 11 (39)

and

[d,] [d. IS,] + d2 [S~t] + d3 [S,] ] [du] (40)

where the stress and strain vectors are ordered as in Eq. (20), the matrices

St. S2. S3 are
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__ •1 1

1 I Symm 0 1 Symm

-[s - 0 0 0 [S21 0 0 2
1 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 2
S0 0 0 0 00 0 0 0 0 02

(41)

2 3

X2I

and the functions C1, C2 and di, dz, d3 are given by
1 1

c= [-L (1+a) -- (I+b)]
9X 6G

1
C2= [- (+b)]

ld, (+ m a) - + (li-b)]
9K TG

2 =C (42)

1 n -

o° -d3=I2G 2

b , )n-

Eq. (40) gives the nonlinear tangent compliance matrix for the matrix elements in the
lamina micro-model. The material constants can be determined by fitting lamina micro-
model response to finite element micromechanical results (WYO2D) or to experimental
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results. A parameter value a = 0 removes the pressure-volume change nonlinearity; and a

value P = I provides sufficient generality for modeling the shear behavior. Good initial esti-

mates for ro and n can be obtained from neat resin response data; final values of n should
be somewhat lower (more gradual softening) since the lamina micro-model deals with aver-
age stresses rather than local stresses.

7. Summary and Conclusions

The material model architecture which has been developed has several attractive fea-
tures:

1) It presents a standard interface to structural analysis packages. The material model mi-

cro-structure is hidden from the element and structural-level processes.

2) It is simple enough to be a viable approach for nonlinear structural analysis.

3) It is based on simplified micro-mechanical analysis, and allows predictions of material
and structural behavior to be made, starting from known or assumed material properties for
fiber and matrix constituents.

4) It is accurate, as shown by comparisons with experiments, detailed finite element
micromechanical results, and ply-by-ply elasticity solutions for a thick cylinder.

5) The model architecture provides sufficient flexibility for modeling different types of non-
linear behavior.
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8. Development Plan

A plan for developing the material modeling capability is:

(1) Implement the material model with the simple power-law nonlinearity for the matrix;

and with tangential stress updates, i.e. u -- U + d'u . This is a simole initial version of the
material modei with a crude stress updating procedure.

(2) The development now follows two parallel paths:

(A) Carry out nonlinear structural analyses of stiffened and unstiffened composite shells,
including stability effects. This serves two purposes: first, an early indication is provided of
the potential importance of nonlinear material behavior for structural response; and, sccond,
important experience will be obtained to guide further material model development.

(B) Couple the initial version of the material model to a material model driver, which mim-
ics the structural package interface and allows the material model to be exercised over
arbitrary stress and strain histories.

(i) Carry out comparisons with micromechanical analyses, DTRC thick-section com-
pression tests, and results available in the literature to determine material model parameters
for the power-law model. Incorporate this information in structural analysis studies,
Part(A).

(ii) If initial evaluations are favorable, continue development of material model; de-
velop and implement stress-update algorithm; investigate kink-banding and interply
delamination modeling issues.
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Graphite Epoxy

-E 24 x 106 psi 0.6 x 106 psi E

E2  2 x 10 6 psi

_G12 4 x 106 psi

V12 0.30 0.30 v

V23  0.15

Table 1. Graphite and Epoxy Properties
used in comparisons with
FE micromechanical modeling

AS4 Carbon S2 glass 3501-6

Fibers Fibers Epoxy

E, 27 x 106 psi 12.6 x 106 psi E

E2 2.5 x 106 psi

G12  5 x 106 psi 0.26 x 106 psi G

v12 0.30 0.25 0.40 v

V23  0.25

Table 2. Fiber and Matrix Properties used
for prediction of Lamina Properties
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AS4 / 3501-6 prepreg FVF = 60 %

Experimental Micro-Model

E, 16.48 x 10 6 psi 16.50 x 10 6 psi

E2  1.40 x 106 psi 1.56 x 106 psi

E3  1.40 x 10 6 psi 1.56 x 106 psi

V1 0.334 0.337

V13 0.328 0.337

V2 3  0.540 0.468

1
G13 0.87 x 10 psi 0.82 x 10 6 psi

S...G3 0.87 x 10 6 psi 0.82 x 10 6 psi

- 3

G23  0.55 x 106 psi 0.53 x 106 psi

Notes 1 d 451J, tension test

2 G13 assumed equal to G12

3 G23 from literature

Table 3. Lamina Properties for AS413501-6 Prepreg Tape

-31-



S2 glass / 3501-6 prepreg FVF = 54 %

Experimental Micro-Model

E, 7.15 x 106 psi 7.15 x 106 psi

E2  2.13 x 106 psi 2.21 x 106 psi

E3  2.13 x 106 psi 2.21 x 106 psi

V12  0.296 0.302

V13 0.306 0.302

V23 0.499 0.576

1

G12  0.98 x 106 psi 0.70 x 106 psi

2
G13 0.98 x 10 6 psi 0.70 x 10 6 psi

3
G2 3  0.55 x 10 6 psi 0.70 x 106 psi

Notes: 1 1± 45 11, tension test

2 G13 assumed equal to G12

3 C23 from literature

Table 4. Lamina Properties for S2 glass13501-6 Prepreg Tape
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[ 02 / 90 ]16s Laminate

Carbon / Epoxy S2 glass / Epoxy

Experimental Sublaminate Experimental Sublaminate
Model Model

E, 11.63 x 106 psi 11.53 x 10 6 psi 5.82 x 106 psi 5.52 x 106 psi

Ey 6.47 x 106 psi 3.83 x 106 psi

E, 1.80 x 106 psi 2.38 x 106 psi

V-, 0.069 0.073 0.166 0.166

Va 0.469 0.488 0 163 0.405

V) 0.519 0.459

Go 0.87 x 106 psi 0.98 x 10 6 psi

G. 0.73 x 10' psi 0.78 1 10 psi

G, 0.63 x 106 psi 0.64 x 10 psi

Table 5. Smeared Properties for 96-ply Laminates
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interface with adjacent lamina

z thickness direction

x• Y

plane of lamina

Interface Conditions

Continuity of In-plane Strains E'. ,y

& Out-of-Plane Stresses 0, tr:. Tg;

F4. 1 Interface Conditions between adjacent Laminae
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Nodes

Material Points

Fig. 2 Material Points (Gauss Integration Points) for 7 racking Material Response
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Load P Numerical
SolutionS Point

Exact Solution

Pn"- 91 Rn

I n

Un Displacement U

Fig. 3 Numerical Solution of Nonlinear Structural Equations;
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